Biographie

Dr. Asef Ghabeli promovierte im Fach Elektrotechnik und Elektronik an der Slovak Technical University in Bratislava, Slowakei. Er ist auf die Anwendung der Hochtemperatur-Supraleitung (HTS) spezialisiert, insbesondere auf die Modellierung, Auslegung und Optimierung supraleitender Geräte.

Der Forschungsschwerpunkt von Dr. Ghabeli liegt in der Entwicklung von Simulationswerkzeugen für HTS-Flux-Pumpen, Transformatoren, elektrische Maschinen, Magnetlager und Magnete für Fusionsanwendungen. Er entwickelte das erste dreidimensionale numerische Modell einer dynamoartigen HTS-Flux-Pumpe und leistete einen wesentlichen Beitrag zum Verständnis ihres Funktionsprinzips.

Seine Arbeiten unterstützten bedeutende Entwicklungen, darunter die elektromagnetische Auslegung eines 15-MVA-HTS-Transformators, die Analyse supraleitender Magnetlager sowie die Simulation von Abschirmströmen für Fusionsmagnete.

Dr. Ghabeli ist regelmäßiger Gutachter für Fachzeitschriften wie Superconductor Science and Technology und IEEE Transactions on Applied Superconductivity. Darüber hinaus war er als Session Chair auf den internationalen Konferenzen EUCAS 2023 und EUCAS 2025 tätig. Für die Magnet Technology Conference 2025 (MT29) fungiert er zudem als Technischer Redakteur.

Publikationsliste


  1. 3D modeling and measurement of HTS tape stacks in linear superconducting magnetic bearings
    Ghabeli, A.; Fuchs, G.; Hänisch, J.; Zhou, P.; de Haas, O.; Morandi, A.; Grilli, F.
    2024. Superconductor Science and Technology, 37 (6), Art.-Nr.: 065003. doi:10.1088/1361-6668/ad3c9a
  2. Characterization of flux pump-charging of high-temperature superconducting coils using coupled numerical models
    Zhou, P.; Ghabeli, A.; Ainslie, M.; Grilli, F.
    2023. Superconductor Science and Technology, 36 (11), Art.-Nr. 115002. doi:10.1088/1361-6668/acf739
  3. Charging process simulation of a coil by a self-regulating high-T superconducting flux pump
    Zhou, P.; Zhou, Y.; Ainslie, M.; Ghabeli, A.; Grilli, F.; Ma, G.
    2023. Superconductivity, 7, Article no: 100061. doi:10.1016/j.supcon.2023.100061
  4. Impact of Magnet Number on the DC Output of a Dynamo-Type HTS Flux Pump
    Zhou, P.; Ren, G.; Ainslie, M.; Ghabeli, A.; Zhang, S.; Zhai, Y.; Ma, G.
    2023. IEEE Transactions on Applied Superconductivity, 33 (8), 1–9. doi:10.1109/TASC.2023.3299601
  5. Coupling electromagnetic numerical models of HTS coils to electrical circuits: multi-scale and homogeneous methodologies using the T-A formulation
    Zhou, P.; Dos Santos, G.; Ghabeli, A.; Grilli, F.; Ma, G.
    2022. Superconductor Science and Technology, 35 (11), Art.-Nr.: 115005. doi:10.1088/1361-6668/ac93bd
  6. Modeling the charging process of a coil by an HTS dynamo-type flux pump
    Ghabeli, A.; Ainslie, M.; Pardo, E.; Quéval, L.; Mataira, R.
    2021. Superconductor Science and Technology, 34 (8), Article no: 084002. doi:10.1088/1361-6668/ac0ccb
  7. Corrigendum: A new benchmark problem for electromagnetic modelling of superconductors: the high-T superconducting dynamo (2020 Supercond. Sci. Technol. 33 105009)
    Ainslie, M.; Grilli, F.; Quéval, L.; Pardo, E.; Perez-Mendez, F.; Mataira, R.; Morandi, A.; Ghabeli, A.; Bumby, C.; Brambilla, R.
    2021. Superconductor science and technology, 34 (2), Art.: 029502. doi:10.1088/1361-6668/abd522
  8. 3D modeling of a superconducting dynamo-type flux pump
    Ghabeli, A.; Pardo, E.; Kapolka, M.
    2021. Scientific Reports, 11 (1), Article no: 10296. doi:10.1038/s41598-021-89596-4
  9. A new benchmark problem for electromagnetic modelling of superconductors: the high-T superconducting dynamo
    Ainslie, M.; Grilli, F.; Quéval, L.; Pardo, E.; Perez-Mendez, F.; Mataira, R.; Morandi, A.; Ghabeli, A.; Bumby, C.; Brambilla, R.
    2020. Superconductor science and technology, 33 (10), Article: 105009. doi:10.1088/1361-6668/abae04
  10. Modeling of airgap influence on DC voltage generation in a dynamo-type flux pump
    Ghabeli, A.; Pardo, E.
    2020. Superconductor Science and Technology, 33 (3), Article no: 035008. doi:10.1088/1361-6668/ab6958
  11. Impact of critical current fluctuations on the performance of a coated conductor tape
    Gömöry, F.; Šouc, J.; Adámek, M.; Ghabeli, A.; Solovyov, M.; Vojenčiak, M.
    2019. Superconductor Science and Technology, 32 (12), 124001. doi:10.1088/1361-6668/ab4638
  12. Impact of a REBCO coated conductor stabilization layer on the fault current limiting functionality
    Búran, M.; Vojenčiak, M.; Mošať, M.; Ghabeli, A.; Solovyov, M.; Pekarčíková, M.; Kopera, Ľ.; Gömöry, F.
    2019. Superconductor Science and Technology, 32 (9), 095008. doi:10.1088/1361-6668/ab2c8e
  13. Capability of new multi-segment winding configurations in HTS transformer to mitigate electromagnetic forces under short-circuit condition
    Ghabeli, A.; Besmi, M. R.
    2017. Cryogenics, 84, 20–28. doi:10.1016/j.cryogenics.2017.04.002
  14. Solving static economic load dispatch using improved exponential harmony search optimisation
    Rahmani Dashti, D.; Ghabeli, A.; Hosseini, S. M.
    2016. Australian Journal of Electrical and Electronics Engineering, 13 (2), 142–150. doi:10.1080/1448837X.2016.1138841
  15. Reduction of Electromagnetic Force in AC Distributed Winding of Fault Current Limiter under Short-Circuit Condition
    Ghabeli, A.; Yazdani-Asrami, M.; Doroudi, A.; Gholamian, S. A.
    2015. Journal of Magnetics, 20 (4), 400–404. doi:10.4283/JMAG.2015.20.4.400
  16. Optimization of Distributive Ratios of Apportioned Winding Configuration in HTS Power Transformers for Hysteresis Loss and Leakage Flux Reduction
    Ghabeli, A.; Yazdani-Asrami, M.; Besmi, M. R.; Gholamian, S. A.
    2015. Journal of Superconductivity and Novel Magnetism, 28 (12), 3463–3479. doi:10.1007/s10948-015-3165-8
  17. A Novel Unsymmetrical Multi-Segment Concentric Winding Scheme for Electromagnetic Force and Leakage Flux Mitigation in HTS Power Transformers
    Ghabeli, A.; Yazdani-Asrami, M.; Gholamian, S. A.
    2015. IEEE Transactions on Applied Superconductivity, 25 (6), 1–10. doi:10.1109/TASC.2015.2483582

Vorträge


  1. Mitigation of AC loss in a 15 MVA HTS transformer for wind energy system via numerical modeling
    Ghabeli, A.; Grilli, F.; Noe, M.; Wescley, de S.; Gangel, J.; Mbuy, A.; Schacherer, C.; Rother, S.
    2024, September 4. Applied Superconductivity Conference (ASC 2024), Salt Lake City, UT, USA, 1.–6. September 2024. doi:10.5281/zenodo.13908047
  2. 3D modeling of stack-type superconducting magnetic bearings
    Ghabeli, A.; Grilli, F.; Hänisch, J.; Fuchs, G.; de Haas, O.; Zhou, P.
    2023, September 4. 16th European Conference on Applied Superconductivity (EUCAS 2023), Bologna, Italien, 3.–7. September 2023. doi:10.5281/zenodo.10016436
  3. 3D modeling of HTS tape stacks in superconducting magnetic bearings with real thickness
    Ghabeli, A.; Grilli, F.; Zhou, P.; Hänisch, J.; Fuchs, G.; de Haas, O.
    2022, Juni. 8th International Workshop on Numerical Modeling of High Temperature Superconducters (2022), Nancy, Frankreich, 14.–16. Juni 2022. doi:10.5281/zenodo.7190058
  4. 3D Modeling of Screening Currents and Voltage in a Superconducting Flux Pump with Transport Current
    Ghabeli, A.; Pardo, E.; Kapolka, M.
    2021, September 5. 15th European Conference on Applied Superconductivity (EUCAS 2021), Online, 5.–9. September 2021. doi:10.5281/zenodo.5886602
  5. Modeling HTS dynamo-type flux pumps: open-circuit mode and charge of an HTS coil
    Ghabeli, A.; Ainslie, M. D.; Pardo, E.; Quéval, L.
    2021, Juni 22. 7th International Workshop on Numerical Modelling of High Temperature Superconductors (HTS 2021), Online, 22.–23. Juni 2021. doi:10.5281/zenodo.5040589
  6. 3D modeling of a superconducting dynamo-type flux pump
    Ghabeli, A.; Pardo, E.; Kapolka, M.
    2020, Oktober 23. Applied Superconductivity Conference (ASC 2020), Online, 24. Oktober–7. November 2020. doi:10.5281/zenodo.4264833
  7. Modeling­ and­ measurement ­of ­the ­voltage ­signal­ in ­HTS ­flux­ pumps
    Ghabeli, A.; Pardo, E.; Soloviov, M.; Šouc, J.
    2019, September 4. 14th European Conference on Applied Superconductivity (EUCAS 2019), Glasgow, Vereinigtes Königreich, 1.–5. September 2019. doi:10.5281/zenodo.5233533