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Statement of the problem

•Need for a computational model for Siegbahn 
drag pumps that takes into account:

• Transitional rarefied flow regime
• Curved channels (spiral grooves)
• Clearances

•The pumping effect is due to a circumferential 
velocity induced by the rotor motion:

• It develops a 3D flow along the channel 
• It imposes a pressure jump  

•Presence of inertial forces:
• Centrifugal force
• Coriolis force
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Typical approaches

The flow properties ( flow rates and stresses), in the limit of its stationary solution, 
could be computed by means of various modeling approaches:

• Fully 3D approaches 

 Direct Simulation Monte Carlo  - DSMC (J.Heo, Y. Hwang, J. Vac . Sci. Technol. A  
20, 2002)

 Kinetic – Boltzmann equation

• Reduced order approaches based on the kinetic equation (linearized 2D 
Boltzmann equation)

 Asymptotic diffusion models – spiral channel section (K.Aoki, P.Degond,          
L. Mieussens et al., Multiscale Model. Simul. 6, 2008)

 Sharipov's Holweck model – drag channel section ( F. Sharipov, P.Fahrenbach, 
A.Zipp J. Vac . Sci. Technol. A  23, 2005)

Purpose of extending Sharipov's approach for Holweck pumps to radial pumps in 
Siegbahn geometry.
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Summary of Sharipov's Holweck model (I)

• Flow field is characterized by two 
distinct phenomena:
I. Flow field due to the 

rotation of the cylinder 
wall ->  Couette

II. Flow field due to the 
pressure gradient ->  
Poiseuille
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• Flow field decoupled in two distinct 
directions:

I. The main flow direction 
along the channel
(z direction)

II. The leak flow across the 
channel and over the 
groove’s tip (x direction)

• A linear approach is adopted
•The main flow is expressed as the superposition of those elemental solutions, 
while no inertial effects, no curvature of the channel and no end effects are taken into 
account



Summary of Sharipov's Holweck model (II)

• In the local 2D cross section of the channel,  the following assumptions are made:

 Elemental flow are calculated from the stationary Boltzmann equation linearized in the 
rotational velocity and pressure gradients components,  according to the  elemental 
flow in exam.

 BGK closure for the collisional term (isothermal flows)

 The order of equation (3D) is reduced assuming that derivatives along the channel 
direction (z-coordinate) are  locally zero (Couette Flow ) or constant (Poiseuille
Flow). 

 Flow is determined in the cross section of the channel, and it is dependent only on 
the local rarefaction parameter δ = hP/µv0, considered as constant in the section 
(linearization).

 Mass conservation is locally enforced to obtain a value of pressure gradient consistent 
with the applied forces and boundary conditions.
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Siegbahn stages modeling concepts

• Siegbahn stages are mainly characterized by a flow 

• in the direction tangential to the spiral channel  (rotation of the disk)

• in the direction normal to the channel (pressure gradients)

• In general, the same considerations made for the Holweck pump could be 

applied, if an appropriate reference system is chosen 

• cylindrical, non-inertial reference system
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● Inertial effects are automatically included

● Constraints in the choice of the computational channel section ( constant tangential 

velocity and periodicity – circumference arc).  



● Linearized governing equations are solved in the local reference system of cartesian, 
fixed, coordinates defined by the spiral geometry in the channel centerline
(inertial forces does not appear explicitly)

● Let x,y,z be the local reference system (green) and ϕ,y,r the global reference system (red) :

● The two system are rotated between each other of an angle θ, (defined by the spiral 
geometry, variable with the radial and tangential coordinates of the global system) . The 
function g is the residual of the linearization ( equal to 0 in Couette flows, equal to cx or cz in 
Poiseuille flows)

Siegbahn stages : a rough approximation(I)
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We roughly applied the same approach of 
the Holweck model, with the same 
decomposition in 4 elemental flows 
provided that: 

● Geometry of the channel section is expressed  in the 
global reference system of the pump in cylindrical 
coordinates

d



● Pressure evolution along the spiral channel can be still obtained enforcing local mass 
conservation

● A  variable geometry for the section is set along the channel. Thus, a coupled
computation of Boltzmann equation and pressure ODE is required , in order to march 
along the channel section by section

● In first approximation, we impose standard Maxwell diffuse scattering boundary 
conditions on walls, and zero gradient to clearances 

● No wall impermeability and periodicity are provided

Siegbahn stages : a rough approximation (II)
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Siegbahn stages : Results (I)
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Siegbahn stages : Results (II)
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Siegbahn stages : Results (III)
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Siegbahn stages : a consistent approach
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● The former method is not accurate when 
● Curvature of the spiral channel is high 
● Heavy gases are considered (not negligible inertial effects and linear 

approximation questionable)

● A more consistent approach will be to solve the governing equation in cylindrical 
coordinates:

● In particular, the scalar product                    is expressed in a general curvilinear, non 
orthogonal, system of coordinates (S,T,y) as described in figure:

● In this new configuration, impermeability on 
walls and periodicity on clearances are easily 
recovered.

● Holweck-like approximations are imposed on 
the S-derivative.



Conclusions

 The prediction of the flow field in a radial drag pump 

with Siegbhan geometry hs been investigated

 An extension of the Sharipov’s Holwek model has been 

proposed

 In a first approximation, a straigthforward application of 

the linearized 2D Boltzmann Eq. in cartesian 

coordinates has been employed

 The results are promising, but not sufficiently accurate, 

possibly due to non consistent boundary conditions

 A more accurate model, with consistent boundary 

conditions, is under development
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Open questions

 Is there any possibility to correct the results for 

heavier gases, which are more sensitive to the 

linearization?

 What are the limits of the 2D approach? 

What are the benefits of a 3D approach?     

How much does a 3D approach increase the 

computational cost? 
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A possible approach?

1) Use the 3D non-linear equation

2) Approximate the derivative of the distribution 

function in the main direction by the derivative 

of the equilibrium

3) Use one-sided derivatives (maybe unstable) 

for the discretization of this derivative

4) Space marching “section-by-section” from inlet 

to outlet
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All results obtained for a hydrogen gas

Flow results: Couette Flow
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Flow results: Couette Flow

All results obtained for a hydrogen gas
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Flow results: Poiseuille Flow

All results obtained for a hydrogen gas
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Flow results: Poiseuille Flow

All results obtained for a hydrogen gas
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Details on numerical scheme (newest approach)

● A Discrete Velocity Method, with a  finite difference scheme (upwind) is used 

to integrate the linearized Boltzmann equations

● Derivatives in the velocity space are treated with a modified upwind scheme 

(T-UNCE), as suggested by Mieussens (J.Comp Phys 2000)

● The three-dimensional velocity space (cr,cθ,cy) is rearranged in cylindrical 

coordinates (cm,Ψ,cy), with a typical dimension of 16x40x16 degrees of 

freedom.

● Integrals for macroscopic quantities are evaluated using a Gauss-Hermite

(cy-velocities) and Gauss Legendre (cm-velocities)  quadrature formulas.

● Stationary solutions are captured through a pseudo-transient technique 

(relaxation of the time-dependent linearized BGK-Boltzmann equation up to 

its stationary solution)

● An explicit time-marching scheme is employed. The solver is designed to 

work on MPI architectures to speed up calculations.
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