Which Superconducting Magnets for DEMO and Future Fusion Reactors?

Reinhard Heller

Inspired by Jean Luc Duchateau (CEA)
Outline

- Introduction - Status of activities on magnet for fusion reactors in Europe
- A few questions related to DEMO
- Circulating power in DEMO
- General considerations about DEMO TF magnet
 - From toroidal magnetic field B_t to magnet dimensioning field $B_{t_{\text{max}}}$
 - The dominating role of structures
- A preliminary design of DEMO
- Challenges for superconducting materials in fusion
- Conclusions

General notes:

1 - Talk is based on presentation of J.L. Duchateau given at the EFDA-DEMO workshop on May 10th 2011 in Garching
2 - I concentrate mainly on TF magnets for DEMO
Introduction - Status of activities on magnet for fusion reactors in Europe

- A few questions related to DEMO
- Circulating power in DEMO
- General considerations about DEMO TF magnet
 - From toroidal magnetic field B_t to magnet dimensioning field $B_{t_{max}}$
 - The dominating role of structures
- A preliminary design of DEMO
- Challenges for superconducting materials in fusion
- Conclusions
Introduction - Status of activities on magnet for fusion reactors

- European laboratories were involved from the beginning in the development of superconducting magnets for fusion devices towards DEMO

- Next European Torus [1]
 NbTi at 1.8 K, Nb$_3$Sn at 4.2 K, react&wind or wind&react...

- ITER [2]
 Nb$_3$Sn CICC,
 TF coil with radial plates and casing,
 CS&PF with thick jackets and no casing

Introduction - Status of activities on magnet for fusion reactors

- Assessment of the use of HTS for DEMO in the frame of EFDA Task HTSMAG (Studies) and HTSPER (material database)
 - 3 options – high field, intermediate temperature and high temperature

HTS for Fusion Magnets – Main Conceptual Options

1) **High Field Option**
 - At present TF conductor fields < 15 T most probable
 - (higher neutron flux density problem)

2) **Intermediate Temperature Option**
 - Operating temperature at 20 - 30 K, ITER like fields.
 - HTS performance ok, increased efficiency but He still required.

3) **High Temperature Option**
 - Operating temperature at a level where no thermal shield and maybe no He is required (T > 65 K).
 - Simplification of reactor and significant increase of efficiency.
 - HTS performance to be confirmed.
 - Re-123 only option

A. Vostner, EFDA, May 2007, HTSMAG – HTSPER Meeting, Barcelona
Introduction - Status of activities on magnet for fusion reactors in Europe

A few questions related to DEMO

Circulating power in DEMO

General considerations about DEMO TF magnet
 - From toroidal magnetic field B_t to magnet dimensioning field $B_{t\text{max}}$
 - The dominating role of structures

A preliminary design of DEMO

Challenges for superconducting materials in fusion

Conclusions
A few questions related to DEMO

1. Which kind of thermonuclear reactor to be envisaged: Steady state or pulsed?

2. How to select the couple \((R, B_t)\) for DEMO

3. Which superconducting conductor for DEMO? Should it be an extrapolation of the ITER solution (CICC)?

4. Which superconducting material for DEMO TF magnet system?

Proposed approach

The answer to these questions should not been brought independently from each other or “a priori” but consistently taking into account inter relationships.
- Introduction - Status of activities on magnet for fusion reactors
- A few questions related to DEMO
- Circulating power in DEMO
- General considerations about DEMO TF magnet
 - From toroidal magnetic field B_t to magnet dimensioning field B_{tmax}
 - The dominating role of structures
- A preliminary design of DEMO
- Challenges for superconducting materials in fusion
- Conclusions
Circulating power in DEMO

- An important parameter is the circulating power in a fusion reactor
- Several components contribute (on different temperature levels)
 - Heating and current drive
 - Pumping in blanket
 - Superconducting magnets
 - Cryopumps

Courtesy of JLD
Circulating power in DEMO studies
$P_{eq} \sim 1.3 \text{ GW (from [3])}$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating & current drive</td>
<td>303</td>
<td>688</td>
<td>182</td>
<td>506</td>
<td>52</td>
</tr>
<tr>
<td>He pumping in blankets</td>
<td>282</td>
<td>641</td>
<td>256</td>
<td>395</td>
<td>40</td>
</tr>
<tr>
<td>SC magnets cryogenics</td>
<td>25</td>
<td>57</td>
<td>0</td>
<td>57</td>
<td>6</td>
</tr>
<tr>
<td>Cryopumps</td>
<td>7.5</td>
<td>17.1</td>
<td>0.0</td>
<td>17.1</td>
<td>2</td>
</tr>
</tbody>
</table>

Courtesy of JLD

Circulating power in DEMO

Conclusion on circulating power from DEMO studies

The circulating power of DEMO is very large

1. The magnet cryogenic power is contributing at a low level in the corresponding thermal power:

 57 MW over 970 MW (about 6%)

2. The possibilities of reducing the 970 MW have to be explored (pulsed reactor?)
Introduction - Status of activities on magnet for fusion reactors
A few questions related to DEMO
Circulating power in DEMO
General considerations about DEMO TF magnet
 - From toroidal magnetic field B_t to magnet dimensioning field $B_{t_{\text{max}}}$
 - The dominating role of structures
A preliminary design of DEMO
Challenges for superconducting materials in fusion
Conclusions
General considerations about DEMO TF magnet

- The DEMO magnet system is the cornerstone of the tokamak, the cost investment represents about 30% of the machine cost. The main orientations have to be discussed at the very early stage of the project.

- The factor of merit $\zeta = R^2 B_t^3$ is a key driver of the machine performances regarding the fusion power and the amplification factor Q of energy. R is the major radius of the Tokamak and B_t is the magnetic field at the plasma centre.

- The selection of the couple (R, B_t) has to be made in tight connection with: the questions of cost, of available technology and of accessibility to the plasma through the ports.

There is no guaranty that the highest magnetic field B_t is the best solution.
General considerations about DEMO TF magnet

From toroidal magnetic field B_t to magnet dimensioning field $B_{t_{\text{max}}}$

Starting from the plasma center, the project can be built up by successive layers towards the Tokamak axis.

Starting from (R,B_t) and Δ_{int} it is not evident that a solution can be found.

The very large Lorentz forces are driving the solutions, imposing a very low overall current density in the TF and CS systems.
General considerations about DEMO TF magnet

About Δ_{int}: the distance between plasma edge and the superconducting winding

\[\Delta_{\text{int}} = e_{so} + e_{sh} + e_{\text{vac}} \]

- e_{so}: scrape off layer
- e_{sh}: first wall + blankets + vacuum vessel + neutron shielding
- e_{vac}: coil vacuum

Δ_{int} plays a major role in the amplification of magnetic field from B_t to B_{max}
General considerations about DEMO TF magnet

General considerations about DEMO TF magnet studies

The dominating role of structures

<table>
<thead>
<tr>
<th>Type of material</th>
<th>Relative occupation (indicative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>79%</td>
</tr>
<tr>
<td>Helium</td>
<td>6.9 %</td>
</tr>
<tr>
<td>Total copper ((\tau' = 11) s)</td>
<td>8.8 %</td>
</tr>
<tr>
<td>Non copper</td>
<td>4.2 %</td>
</tr>
<tr>
<td>Wrappings</td>
<td>1.1 %</td>
</tr>
<tr>
<td>Total</td>
<td>100 %</td>
</tr>
</tbody>
</table>

- \(J_{TF} = 11\) A/mm\(^2\)
- \(J_{cable} = 52\) A/mm\(^2\)
- \(J_{noncopper} = 290\) A/mm\(^2\)
Introduction - Status of activities on magnet for fusion reactors
A few questions related to DEMO
Circulating power in DEMO
General considerations about DEMO TF magnet
 - From toroidal magnetic field B_t to magnet dimensioning field $B_{t_{\text{max}}}$
 - The dominating role of structures
A preliminary design of DEMO
Challenges for superconducting materials in fusion
Conclusions
A preliminary design of DEMO

Comment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ITER</th>
<th>DEMO (2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Plasma radius R(m)</td>
<td>6.2</td>
<td>7.5</td>
</tr>
<tr>
<td>Minor plasma Radius (m)</td>
<td>2.</td>
<td>2.46</td>
</tr>
<tr>
<td>Plasma current Ip (MA)</td>
<td>15.</td>
<td>19.4</td>
</tr>
<tr>
<td>Toroidal Magnetic Field B_t(T)</td>
<td>5.3</td>
<td>5.86</td>
</tr>
<tr>
<td>Overall current density in TF inner leg J_{cond} (A/mm(^2))</td>
<td>11.</td>
<td>15.</td>
</tr>
<tr>
<td>Maximum field on TF conductor B_{max} (T)</td>
<td>11.8</td>
<td>14.4</td>
</tr>
<tr>
<td>Fusion Power P_{fus} (MW)</td>
<td>500</td>
<td>2401</td>
</tr>
<tr>
<td>Electrical Power P_{en} (MW)</td>
<td>0.</td>
<td>1000</td>
</tr>
</tbody>
</table>

Tentative set of parameters currently under investigation for DEMO

Probably too high value

\[J_E > B_t \rightarrow F_L > A_{structure} \rightarrow J_E \]
A preliminary design of DEMO

Are CICC necessary for DEMO?
Most of existing superconducting magnets are indirectly cooled

- CICC have been selected for ITER because of pulsed operation (500 s) and because of the possible occurrence of disruption.
- DEMO conditions are different → Steady state operation, no disruption?
 → total shielding of nuclear heating is necessary
 But then fluence may be similar to ITER
- Other solutions are possible for the DEMO conductors such as conduction cooled conditions
A preliminary design of DEMO

Indirect cooling solutions at NIFS

Introduction - Status of activities on magnet for fusion reactors

A few questions related to DEMO

Circulating power in DEMO

General considerations about DEMO TF magnet

- From toroidal magnetic field B_t to magnet dimensioning field $B_{t_{\text{max}}}$
- The dominating role of structures

A preliminary design of DEMO

Challenges for superconducting materials in fusion

Conclusions
Challenges for superconducting materials in fusion

$B^* =$ Magnetic field where critical current goes to zero

<table>
<thead>
<tr>
<th>Material</th>
<th>B^* [T]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb$_3$Sn</td>
<td>20</td>
</tr>
<tr>
<td>Bi2223</td>
<td>15</td>
</tr>
<tr>
<td>MgB$_2$</td>
<td>10</td>
</tr>
<tr>
<td>YBCO</td>
<td>5</td>
</tr>
</tbody>
</table>

Temperature [K]

- LHe: 0
- LH$_2$: 20
- LHe: 40
- LN$_2$: 60
- LN$_2$: 80
- LN$_2$: 100

Coils for Fusion Reactors
Challenges for superconducting materials in fusion

- **T = 4.5 K: LTS (HTS) solution**
 - improve existing LTS materials like Nb$_3$Sn and/or
 - consider an appropriate winding technology.
 - Increase temperature margin (ITER: $\Delta T = 0.7$ K)

- Alternatives to CICC: Other solutions are possible for the DEMO conductors because of steady state conditions
 - Decrease of friction losses (pumping power)
 - Nb$_3$Sn with high filling factor in Rutherford type cable → higher critical properties
 - Possible use of HTS materials → high ΔT available
 - Direct cooling or conduction cooling
 - MgB$_2$ alternative solution for NbTi in PF coils if cheaper and reached mature technology

ITER: sensitivity to Lorentz cycling
Challenges for superconducting materials in fusion

- **T ~ 20 – 30 K: HTS-I option**
 - Material options
 - Bi-2212 round wire
 - REBCO tape
 - He cooling first option but cooling for example with liquid neon feasible
 - Decrease of cryogenic power but small gain in circulating power
 - Conduction cooling robust solutions possible
 - Large temperature margin in operation (compare: only 0.7 K in ITER!)

- **T > 50 K: HTS-II option - The dream of superconductivity (LN₂?)**
 - REBCO tape the only material option
 - Today possible only in self field (e.g. power cables) or for magnets in the range of ~1 T). At present not available for fusion (~13 T), a lot R&D needed
 - Gain in circulating power small compared to 20 K.
 - Simplifies design because no additional radiation shield may be necessary
Introduction - Status of activities on magnet for fusion reactors
A few questions related to DEMO
Circulating power in DEMO
General considerations about DEMO TF magnet
 - From toroidal magnetic field B_t to magnet dimensioning field $B_{t_{\text{max}}}$
 - The dominating role of structures
A preliminary design of DEMO
Challenges for superconducting materials in fusion
Conclusions
Conclusions

- For TF systems of future fusion reactors, the average current density is in the range of 10 A/mm² and is driven by the large amount of structures necessary to resist the Lorentz forces.
- Thereby it is possible to accept superconducting strands with low non-copper current density down to 150 A/mm², without substantially affecting the TF radial extension of the system.
- The ITER solution for the TF magnet system cannot be extrapolated straightforward because DEMO is with low AC losses (steady state?) without disruption(?)
 → other solutions have to be developed and tested
 HTS at intermediate temperatures?
- A solution with HTS materials at nitrogen temperature is very challenging
 → discriminate which solution (HTS or LTS) is the more economical